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ABSTRACT: Computer-generated fractal surfaces may be used as models of evidence physical 
matches. The complexity of the model surface, and by extension, the degree of uniqueness of the 
surface, may be expressed in terms of the time required for the calculation of the surface parame- 
ters. 
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A physical match between two fractured surfaces is routinely viewed, and quite correctly, 
as definitive proof that the surfaces had at one time been joined. Although it is ordinarily a 
straightforward matter to show the "f i t"  between the complementary fractured surfaces, 
there has been little systematic effort within the forensic science community to establish any 
fundamental  or theoretical basis for the uniqueness of a physical match. Walls [1] took the 
position that a fracture propagation (in one plane) is a constrained meandering, and invoked 
the statistical concept of " random walks." Walls '  model is based on possible "inflection 
points" at undefined incremental distances, and results in a probability that the fracture has 
followed a particular course in one plane. 

The present work takes a different approach, in which model surfaces are generated which 
are reminiscent of actual three-dimensional fracture surfaces. The propagation of the model 
surfaces is expressed, not in terms of probability, but in terms of the time required to calcu- 
late the parameters of the surface. 

The model surfaces employed for this purpose are computer-generated fractal surfaces. 
[The neologism "fracta l"  and the word "fracture"  share the same root (fractus, adj., from 
the Latin frangere, v., "to break").]  Fractals are curves or surfaces of "fractional dimen- 
sion" in which the topological dimension strictly exceeds the Hausdorf-Besikovich dimen- 
sion; they have been extensively reviewed by Mandelbrot  [2,3]. Although a full explanation 
is unnecessary here, a fractal may be viewed as a dimensionally discordant figure which is 
defined by a real number.  This real number,  on both intuitive and formal grounds, deserves 
1~o be called the dimension of the figure. We frequently deal with figures in two or three 
dimensions; fractals, on the other hand, need not have dimensions that are integers. For 
example, a fractal may be described by dimension 1.2244 or 2.2816. Fractal geometry would 
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seem applicable to the description of fracture surfaces, as well as toolmarks and other stri- 
ated surfaces, because of the unique ability of fractals to describe natural forms. Nature 
exhibits not just a higher degree of complexity over conventional Euclidean geometry, but an 
altogether different level of complexity which fractals may appropriately address. 

A number of obscure computer programs have been written for the construction of fractal 
surfaces, some of the best of which have been developed by Lucasfilm; one accessable pro- 
gram, however, is that of van de Panne [4]. This program, in the Apple II version, was used 
in the present work. (The van Panne program, as originally published, is capable of plotting 
fractal surfaces along three axes, resulting in a figure with twice as many surfaces as those 
depicted here and comprised entirely of triangles. The resolution in the "Level 6" surface 
presented below approaches pixel size, however; the van de Panne program was therefore 
modified to plot a "net figure" comprised of quadrilaterals, instead of triangles, in order 
that the figures would not be excessively cluttered.) 

Figure 1 illustrates six computer generated fractal surfaces and the surface from which 
they are derived. Three points constitute a plane, and so the triangle seen in Fig. l a  may be 
construed as a surface in object space. A plane surface such as this could not reasonably 
enter into a physical match because it is featureless. But we may now rearrange and build 
onto this surface, imparting features and "personality" to the surface which will ultimately 
result in a realistic approximation of an actual fracture surface. 

The midpoints of each of the sides of a triangle may be randomly raised or lowered relative 
to a "sea level," the amount of raising or lowering being proportional to the length of the side 
of the triangle. The midpoint of one side of the triangle may then be joined to the midpoints 
of the other two sides to form a "net figure" as depicted in Fig. I b. This represents a fractal 
surface of Level 1. The surface is now partitioned into three separate surfaces, a quadrilat- 
eral and two triangles. Although this surface now has some minimal degree of individuality, 
it is scarcely realistic as a model of a fracture surface. 

Repeating the process again of randomly raising or lowering the midpoints of the sides of a 
triangle and joining the midpoint of one side with the midpoints of the other two sides, we 
may derive a fractal surface of Level 2, comprised of ten plane surfaces as depicted in Fig. 
1c. Continuing this through six levels (the limit of memory of a 64K RAM Apple I I+) ,  we 
obtain surfaces such as those depicted in Fig. 1 d through g. Although Fig. I b through e are 
too naive to serve as realistic models of a fracture surface, Fig. lg is of such complexity as to 
be reminiscent of an actual fracture surface. Figure I f  might arguably qualify also. 

We are now in a position to make a quantitative statement as to the complexity, and there- 
fore of the individuality, of the surface. We are able to do so because we may document the 
calculations required by the computer to construct the surface. 

The calculation and plotting time for the Level 1 fractal surface (Fig. I b) with the Apple 
I I +  was determined to be 15 s; for the Level 2 surface the time was 28 s; for the Level 3 
fractal, 67 s; for the Level 4 surface, 205 s; for the Level S surface, 717 s; and for the Level 6 
surface (Fig. lg) the time was 2740 s (or 45 min, 40 s). 

Typical crack propagation velocity in solids is on the order of 2400 m/s [5]. A fracture 
surface of 1 in. 2 (6.45 cm 2) could therefore be generated in approximately 10 #s. If a com- 
puter with a microprocessor capable of 500 000 operations per second (for example, the 
Apple II + )  requires 2740 s to produce a reasonable approximation of a real fracture sur- 
face, it is working approximately 21/2 billion times slower than the processes at work in the 
generation of actual fractures. Stated differently, the Apple computer would have to work 

1 1 2 h b'llion times faster if it had to generate a significant fracture surface in real time. There 
is no doubt but that other, more sophisticated, computers would require less time to con- 
struct the surfaces, but they would also require less time to construct the simple surfaces, for 
example, Fig. l b  through e; it is the relative time that is at issue here. 

The significance of these measures of the relative time required to calculate surface pa- 
rameters is that if we accept Walls' conceptual view of a fracture, that is, that the fracture 
"decides" which course to follow in an iterative fashion, tfien in actual fractures these "deci- 
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FIG. 1--Computer-generateclfractal surjaces: (a) represents a plane surface, and (b) through (g) 
represents fraetal surfaces of  Levels 1 through 6. respectively. The time required for the computation of  
surface parameters using the modification of  the van Panne program [2] is as follows: (b) Level 1--15 s; 
(c) Level 2--28 s: (d) Level 3 - -67  s; (e) Level 4 - -  205 s: (f) Level 5--717 s: (g) Level 6--2740 s. 

sions" are made in an incredibly short period of time and are expressed in a surface of such 
complexity that a computer  would have to work for billions of times longer to mimic the 
actual fracture. In the view of the present author, the framing of the complexity of a fractal 
or fracture surface in terms of the time required for its generation represents a means for the 
conceptualization of the intricacy and uniqueness of an actual fracture. Fracture surfaces of 
even moderate complexity could not credibly be subject to adventitious replication; there is 
no physical basis to explain how extrinsic factors capable of influencing the nature of the 
fracture surface could operate within such a short period of time. 
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